Муниципальное бюджетное общеобразовательное учреждение «Средняя общеобразовательная школа №4»

Ситник Ольга Владимировна Директор МБОУ СОШ № 4 Подписано цифровой подписью: Ситник Ольга Владимировна Директор МБОУ СОШ № 4 DN: cn=Ситник Ольга Владимировна Директор МБОУ СОШ № 4 Дата: 2021.01.26 15:51:10 +05'00'

Приложение к основной образовательной программе среднего общего образования МБОУ СОШ № 4 (в соответствии ФК ГОС)

Рабочая программа учебного предмета математика среднее общее образование 11 класс (136ч)

2018

Пояснительная записка

Статус документа

Настоящая программа по математике составлена на основе федерального компонента государственного стандарта основного образования, примерной программы для общеобразовательных школ, гимназий, лицеев по математике 5-11 класс

Нормативной основой для разработки рабочей программы также являются:

- Федеральный закон «Об образовании» № 273 –Ф3, 2012 г;
- -Приказ МО России «Об утверждении федерального компонента государственных образовательных стандартов начального общего, основного общего, среднего (полного) общего образования» от 05.05.2004 г. № 1089;
- Приказ МО России «ОБ утверждении федерального базисного учебного плана и примерных программ для образовательных учреждений Российской Федерации, реализующих программы общего образования» от 09.03.2004 г. № 1312
 - -НРК(ГОС), утвержденный Постановлением Правительства Свердловской области от 17.01.2006 г. № 15-ПП;
 - -Учебный план МБОУ СОШ № 4;
 - -Годовой календарный учебный график.

Место предмета в базисном учебном плане.

Согласно Федеральному базисному учебному плану для образовательных учреждений Российской Федерации для обязательного изучения математики на этапе основного общего образования отводится 4 часа в неделю. Общий объем часов составляет 136 часов на 34 учебные недели.

Программа является логическим продолжением курса математики 5-6 и 7-9 классов.

Раздел «Алгебра» изложен в опубликованном издательством «Мнемозина» учебнике «Алгебра и начала анализа» под редакцией А.Г. Мордковича, а раздел «Геометрия» преподается по учебнику «Геометрия 10-11 классы» под редакцией Л.С. Атанасяна, издательство «Просвещение». Данные учебники входят в Федеральный перечень учебников.

1. Требования к уровню подготовки выпускников

В результате изучения математики на базовом уровне ученик должен: знать/понимать:

- значение математической науки для решения задач, возникающих в теории и практике; широту и в то же время ограниченность применения математических методов к анализу и исследованию процессов и явлений в природе и обществе;
- значение практики и вопросов, возникающих в самой математике для формирования и развития математической науки; историю развития понятия числа, создания математического анализа, возникновения и развития геометрии;
 - универсальный характер законов логики математических рассуждений, их применимость во всех областях человеческой деятельности;
 - вероятностный характер различных процессов окружающего мира;

АЛГЕБРА

уметь

- выполнять арифметические действия, сочетая устные и письменные приемы, применение вычислительных устройств; находить значения корня натуральной степени, степени с рациональным показателем, логарифма, используя при необходимо необходимости вычислительные устройства; пользоваться оценкой и прикидкой при практических расчетах;
- проводить по известным формулам и правилам преобразования буквенных выражений, включающих степени, радикалы, логарифмы и тригонометрические функции;

- вычислять значения числовых и буквенных выражений, осуществляя необходимые подстановки и преобразования;
- использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
- практических расчетов по формулам, включая формулы, содержащие степени, радикалы, логарифмы и тригонометрические функции, используя при необходимости справочные материалы и простейшие вычислительные устройства;

Функции и графики:

уметь

- -определять значение функции по значению аргумента при различных способах задания функции;
- строить графики изученных функций;
- -описывать по графику *и в простейших случаях по формуле* поведение и свойства функций, находить по графику функции наибольшие и наименьшие значения;
 - решать уравнения, простейшие системы уравнений, используя свойства функций и их графиков;
- использовать приобретенные знания и умения в практической деятельности и повседневной жизни для: описания с помощью функций различных зависимостей, представления их графически, интерпретации графиков;

Начала математического анализа.

Уметь:

- вычислять производные и первообразные элементарных функций, используя справочные материалы;
- исследовать в простейших случаях функции на монотонность, находить наибольшие и наименьшие значения функций, строить графики многочленов *и простейших рациональных функций* с использованием аппарата математического анализа;
 - вычислять в простейших случаях площади с использованием первообразной;
- использовать приобретенные знания и умения в практической деятельности и повседневной жизни для: решения прикладных задач, в том числе социально-экономических и физических, на наибольшие и наименьшие значения, на нахождение скорости и ускорения;

Уравнения и неравенства.

Уметь:

- решать рациональные, показательные и логарифмические уравнения и неравенства, *простейшие иррациональные и тригонометрические* уравнения, их системы;
 - составлять уравнения и неравенства по условию задачи;
 - использовать для приближенного решения уравнений и неравенств графический метод;
 - изображать на координатной плоскости множества решений простейших уравнений и их систем;
- использовать приобретенные знания и умения в практической деятельности и повседневной жизни для: построения и исследования простейших математических моделей;

Элементы комбинаторики.

Уметь:

- решать простейшие комбинаторные задачи методом перебора, а также с использованием известных формул;
 - вычислять в простейших случаях вероятности событий на основе подсчета числа исходов;
- использовать приобретенные знания и умения в практической деятельности и повседневной жизни для: анализа реальных числовых данных, представленных в виде диаграмм, графиков; анализа информации статистического характера;

ГЕОМЕТРИЯ

уметь

- распознавать на чертежах и моделях пространственные формы; соотносить трехмерные объекты с их описаниями, изображениями;
- описывать взаимное расположение прямых и плоскостей в пространстве, аргументировать свои суждения об этом расположении;
- анализировать в простейших случаях взаимное расположение объектов в пространстве;
- изображать основные многогранники и круглые тела; выполнять чертежи по условиям задач;
- строить простейшие сечения куба, призмы, пирамиды;
- решать планиметрические и простейшие стереометрические задачи на нахождение геометрических величин (длин, углов, площадей, объемов);
 - использовать при решении стереометрических задач планиметрические факты и методы;
 - проводить доказательные рассуждения в ходе решения задач;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для: исследования (моделирования) несложных практических ситуаций на основе изученных формул и свойств фигур; вычисления объемов и площадей поверхностей пространственных тел при решении практических задач, используя при необходимости справочники и вычислительные устройства.

2. Основное содержание

АЛГЕБРА

Корни и степени. Корень степени *n*>1 и его свойства. Степень с рациональным показателем и ее свойства. *Понятие о степени с действительным показателем*. Свойства степени с действительным

Логарифм. Логарифм числа. *Основное логарифмическое тождество*. Логарифм произведения, частного, степени; *переход к новому основанию*. Десятичный и натуральный логарифмы, число е.

Преобразования простейших выражений, включающих арифметические операции, а также операцию возведения в степень и операцию логарифмирования.

Основы тригонометрии. Синус, косинус, тангенс, котангенс произвольного угла. Радианная мера угла. Синус, косинус, тангенс и котангенс числа. Основные тригонометрические тождества. Формулы приведения. Синус, косинус и тангенс суммы и разности двух углов. Синус и косинус двойного угла. Формулы половинного угла. Преобразования суммы тригонометрических функций в произведение и произведения в сумму. Выражение тригонометрических функций через тангенс половинного аргумента. Преобразования простейших тригонометрических выражений.

Простейшие тригонометрические уравнения и неравенства. Арксинус, арккосинус, арктангенс числа.

Функции. Область определения и множество значений. График функции. Построение графиков функций, заданных различными способами. Свойства функций: монотонность, четность и нечетность, периодичность, ограниченность. Промежутки возрастания и убывания, наибольшее и наименьшее значения, точки экстремума (локального максимума и минимума). Графическая интерпретация. Примеры функциональных зависимостей в реальных процессах и явлениях.

Обратная функция. График обратной функции.

Степенная функция с натуральным показателем, её свойства и график.

Вертикальные и горизонтальные асимптоты графиков. Графики дробно-линейных функций.

Тригонометрические функции, их свойства и графики; периодичность, основной период.

Показательная функция (экспонента), её свойства и график.

Логарифмическая функция, её свойства и график.

Преобразования графиков: параллельный перенос, симметрия относительно осей координат и симметрия относительно начала координат, симметрия относительно прямой y = x, растяжение и сжатие вдоль осей координат.

Начала математического анализа Понятие о пределе последовательности. Существование предела монотонной ограниченной последовательности. Длина окружности и площадь круга как пределы последовательностей. Бесконечно убывающая геометрическая прогрессия и ее сумма.

Понятие о непрерывности функции.

Понятие о производной функции, физический и геометрический смысл производной. Уравнение касательной к графику функции. Производные суммы, разности, произведения, частного. Производные основных элементарных функций. Применение производной к исследованию функций и построению графиков. Производные обратной функции и композиции данной функции с линейной.

Понятие об определенном интеграле как площади криволинейной трапеции. Первообразная. Формула Ньютона-Лейбница.

Примеры использования производной для нахождения наилучшего решения в прикладных, в том числе социально-экономических, задачах. Нахождение скорости для процесса, заданного формулой или графиком. Примеры применения интеграла в физике и геометрии. Вторая производная и ее физический смысл.

Уравнения и неравенства. Решение рациональных, показательных, логарифмических уравнений и неравенств. Решение иррациональных и тригонометрических уравнений.

Основные приемы решения систем уравнений: подстановка, алгебраическое сложение, введение новых переменных. Равносильность уравнений, неравенств, систем. Решение простейших систем

уравнений с двумя неизвестными. Решение систем неравенств с одной переменной.

Использование свойств и графиков функций при решении уравнений и неравенств. Метод интервалов. Изображение на координатной плоскости множества решений уравнений и неравенств с двумя переменными и их систем.

Применение математических методов для решения содержательных задач из различных

областей науки и практики. Интерпретация результата, учет реальных ограничений.

Элементы комбинаторики, статистики и теории вероятностей. Табличное и графическое представление данных. Числовые характеристики рядов данных. Поочередный и одновременный выбор нескольких элементов из конечного множества. Формулы числа перестановок, сочетаний, размещений. Решение комбинаторных задач. Формула бинома Ньютона. Свойства биномиальных коэффициентов. Треугольник Паскаля. Элементарные и сложные события. Рассмотрение случаев и вероятность суммы несовместных событий, вероятность противоположного события. Понятие о независимости событий. Вероятность и статистическая частота наступления события. Решение практических задач с применением вероятностных методов.

ГЕОМЕТРИЯ

Прямые и плоскости в пространстве. Основные понятия стереометрии (точка, прямая, плоскость, пространство). Пересекающиеся,

параллельные и скрещивающиеся прямые. Угол между прямыми в пространстве. Перпендикулярность прямых. Параллельность и перпендикулярность прямой и плоскости, признаки и свойства. Теорема о трех перпендикулярах. Перпендикуляр и наклонная. Угол между прямой и плоскостью.

Параллельность плоскостей, перпендикулярность плоскостей, признаки и свойства. Двугранный угол, линейный угол двугранного угла.

Расстояния от точки до плоскости. Расстояние от прямой до плоскости. Расстояние между параллельными плоскостями. *Расстояние между скрещивающимися прямыми*.

Параллельное проектирование. Площадь ортогональной проекции многоугольника. Изображение пространственных фигур.

Многогранники. Вершины, ребра, грани многогранника. Развертка. Многогранные углы. Выпуклые многогранники. Теорема Эйлера.

Призма, ее основания, боковые ребра, высота, боковая поверхность. Прямая и наклонная призма. Правильная призма. Параллелепипед. Куб.

Пирамида, ее основание, боковые ребра, высота, боковая поверхность. Треугольная пирамида. Правильная пирамида. Усеченная пирамида.

Симметрии в кубе, в параллелепипеде, в призме и пирамиде. Понятие о симметрии в пространстве (центральная, осевая, зеркальная). Примеры симметрий в окружающем мире.

Сечения куба, призмы, пирамиды.

Представление о правильных многогранниках (тетраэдр, куб, октаэдр, додекаэдр и икосаэдр).

Тела и поверхности вращения. Цилиндр и конус. *Усеченный конус*. Основание, высота, боковая поверхность, образующая, развертка. *Осевые сечения и сечения параллельные основанию*.

Шар и сфера, их сечения, касательная плоскость к сфере.

Объемы тел и площади их поверхностей. Понятие об объеме тела. Отношение объемов подобных тел.

Формулы объема куба, прямоугольного параллелепипеда, призмы, цилиндра. Формулы объема пирамиды и конуса. Формулы площади поверхностей цилиндра и конуса. Формулы объема шара и площади сферы.

Координаты и векторы. Декартовы координаты в пространстве. Формула расстояния между двумя точками. Уравнения сферы *и плоскости*. *Формула расстояния от точки до плоскости*.

Векторы. Модуль вектора. Равенство векторов. Сложение векторов и умножение вектора на число. Угол между векторами. Координаты вектора. Скалярное произведение векторов. Коллинеарные

векторы. Разложение вектора по двум неколлинеарным векторам. Компланарные векторы. Разложение по трем некомпланарным векторам.

 $Условные обозначения: А- темы раздела «Алгебра», <math>\Gamma$ – темы раздела «Геометрия»

Раздел	Содержание учебного материала	Количество часов	Количество контрольных
			работ
A-1	Повторение курса 10 класса	5	1
Γ-1	Метод координат	11	2
A-2	Степени и корни. Степенная функция	12	1
Γ-2	Цилиндр. Конус. Шар	12	1
A- 3	Показательная и логарифмическая функции	20	2
Γ-3	Объемы тел	18	2
A-4	Первообразная и интеграл	7	1
A-5	Элементы математической статистики и теории вероятностей	9	1
A-6	Уравнения и неравенства. Системы уравнений и неравенств	13	1
	Повторение	29	1
	Резерв	6	
	итого	136	13

Методические и учебные пособия

- 1. Алгебра и начала математического анализа. 10-11 классы В 2 ч. Ч. 1 Учебник для учащихся общеобразовательных учреждений (базовый уровень)\ А.Г. Мордкович, «Мнемозина», 2012.;
- 2. Алгебра и начала математического анализа. 10-11 классы В 2 ч. Ч. 2 Задачник для учащихся общеобразовательных учреждений (базовый уровень)\ А.Г. Мордкович, «Мнемозина», 2012.;
 - 3. Алгебра и начала анализа .11 класс: поурочные планы по учебнику А.Г. Мордковича. 2008.
 - 4. Алтынов П.И. Алгебра и начала анализа. Тесты. 10-11 классы. Учебно-методическое пособие, Дрофа, 2002;
 - 5. Атанасян Л.С. Геометрия. Учебник для 10-11 классов общеобразовательных учреждений. М.: «Просвещение», 2011.;
 - 6. Афанасьев Т.Л. Геометрия 11 класс: поурочные планы.2002
 - 7. Геометрия. Рабочая тетрадь. 10 класс. Пособие для учащихся общеобразовательных учреждений. Просвещение. 2011.
 - 8. Геометрия в таблицах. 7-11 классы. Справочное пособие. Л.И. Звавич. Дрофа. 2002
 - 9. Геометрия.10-11 классы. : тесты для текущего и обобщающего повторения. Г.И. Ковалева. Учитель. 2009.
 - 10. Геометрия. 10 класс. Контрольные тесты к учебникам Федерального компонента. Д.Ш. Матросс.
 - 11. Геометрия 11 класс: поурочные планы по учебнику Л.С. Атанасяна. Учитель. 2007.
 - 12. Дидактический материал по геометрии для 10-11 классов: разрезные каточки по стереометрии. Г.И. Ковалева. Учитель. 2007.
 - 13. Дидактические материалы по алгебре и началам анализа для 10 класса. Б.М. Ивлев и др., Просвещение, 2002;
 - 14. Дидактические материалы по алгебре и началам анализа для 11 класса. Б.М. Ивлев и др., Просвещение, 2000;

- 15. Доброва О.Н. Задания по алгебре и математическому анализу: Пособие для учащихся 9-11 класса. Просвещение 1996.
- 16. Контрольные и проверочные работы по геометрии. 10-11 кл. Методическое пособие. Л.И. Звавич. Дрофа. 2002
- 17. Лукичева Е.Ю. Математика в профильной школе. Пособие для учителя. Просвещение. 2005.
- 18. Математика. 5-11 кл., Дополнительные материалы к уроку математики., Дрофа, 2001;
- 19. Математика. 10-11 классы . пределы и производные: теория и практика решения задач. Т.А. Лепехина. Учитель, 2009.
- 20. . Математика. 10-11 классы. Функции помогают уравнениям: элективный курс. Ю.В. Лепёхин. Учитель. 2009.
- 21. Мочалин А.А. Сборник задач по математике с решениями. Учебное пособие.9-11 классы. «Лицей», 1998.
- 22. Первые уроки стереометрии: Пособие для учителей. И.Л. Лукало. Школьная пресса. 2003.
- 23. Сборник упражнений по алгебре. Показательная и логарифмическая функции. Школьная Пресса, 2002;
- 24. Уравнения и неравенства. Нестандартные методы решения. 10-11 классы, учебно-методическое пособие, С.Н. Олехник и др., Дрофа, 2001;

Интернет ресурсы 1.Федеральные порталы образования

- Федеральный портал "Российское образование" (http://www.edu.ru).
- Единое окно доступа к образовательным ресурсам (http://window.edu.ru/library?p_rubr=2.1).
- Единая коллекция цифровых образовательных ресурсов (http://school-collection.edu.ru/).
- Федеральный центр информационно-образовательных ресурсов (http://fcior.edu.ru/).
- Российский общеобразовательный портал (http://www.school.edu.ru/default.asp).
- Каталог образовательных ресурсов сети Интернет для школы (http://katalog.iot.ru/).
- Каталог учебников, оборудования, электронных ресурсов для общего образования (http://ndce.edu.ru/).

2. ЕГЭ и ГИА по математике

- Открытый банк заданий по математике проект московского института открытого образования.
- Единый государственный экзамен сервис компании "Яндекс".
- "ЕГЭ по математике
- ФИПИ
- «Решу ЕГЭ», «Сдам ГИА» (сайт Дмитрия Гущина)

- Александр Ларин
- ЕГЭ- легко. (учебно-тренировочные варианты базового и профильного уровней
- «Распечатай и реши»

Настенные таблицы 10-11 класс геометрия

- 1. Аксиомы стереометрии
- 2. Параллельность в пространстве
- 3. Перпендикулярность в пространстве
- 4. Сечения параллелепипеда плоскостью
- 5. Сечения тетраэдра
- 6. Цилиндр и конус
- 7. Вписанные (описанные) многогранники
- 8. Векторы в пространстве
- 9. Метод координат в пространстве

Алгебра

- 1. Приращение аргумента, приращение функции.
- 2. Производная. Физический смысл производной.
- 3. Касательная к кривой. Геометрический смысл производной.
- 4. Критические точки функции.
- 5. Монотонные и немонотонные функции.
- 6. Экстремумы функции.
- 7. Наибольшее и наименьшее значения функции.
- 8. Исследование функции с помощью производной
- 9. Построение графиков функций с помощью производной
- 10. Применение производной
- 11. Решение задач с параметрами.